Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

Identifieur interne : 002C91 ( Main/Exploration ); précédent : 002C90; suivant : 002C92

The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.

Auteurs : Marcel Robischon [États-Unis] ; Juan Du ; Eriko Miura ; Andrew Groover

Source :

RBID : pubmed:21205615

Descripteurs français

English descriptors

Abstract

The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.

DOI: 10.1104/pp.110.167007
PubMed: 21205615
PubMed Central: PMC3046580


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.</title>
<author>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Experiment Station, United States Department of Agriculture Forest Service, Davis, California 95618, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Experiment Station, United States Department of Agriculture Forest Service, Davis, California 95618</wicri:regionArea>
<wicri:noRegion>California 95618</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
</author>
<author>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21205615</idno>
<idno type="pmid">21205615</idno>
<idno type="doi">10.1104/pp.110.167007</idno>
<idno type="pmc">PMC3046580</idno>
<idno type="wicri:Area/Main/Corpus">002F60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F60</idno>
<idno type="wicri:Area/Main/Curation">002F60</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F60</idno>
<idno type="wicri:Area/Main/Exploration">002F60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.</title>
<author>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Forest Genetics, Pacific Southwest Experiment Station, United States Department of Agriculture Forest Service, Davis, California 95618, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Forest Genetics, Pacific Southwest Experiment Station, United States Department of Agriculture Forest Service, Davis, California 95618</wicri:regionArea>
<wicri:noRegion>California 95618</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
</author>
<author>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Body Patterning (MeSH)</term>
<term>Cambium (cytology)</term>
<term>Cambium (embryology)</term>
<term>Cambium (genetics)</term>
<term>Cambium (growth & development)</term>
<term>Cell Differentiation (genetics)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Homeodomain Proteins (genetics)</term>
<term>Homeodomain Proteins (metabolism)</term>
<term>Leucine Zippers (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Mutation (genetics)</term>
<term>Organ Specificity (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Growth Regulators (genetics)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Stems (cytology)</term>
<term>Plant Stems (embryology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Vascular Bundle (genetics)</term>
<term>Plant Vascular Bundle (growth & development)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (embryology)</term>
<term>Populus (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Wood (cytology)</term>
<term>Wood (genetics)</term>
<term>Wood (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (croissance et développement)</term>
<term>Bois (cytologie)</term>
<term>Bois (génétique)</term>
<term>Cambium (croissance et développement)</term>
<term>Cambium (cytologie)</term>
<term>Cambium (embryologie)</term>
<term>Cambium (génétique)</term>
<term>Différenciation cellulaire (génétique)</term>
<term>Facteur de croissance végétal (génétique)</term>
<term>Faisceau vasculaire des plantes (croissance et développement)</term>
<term>Faisceau vasculaire des plantes (génétique)</term>
<term>Glissières à leucine (génétique)</term>
<term>Gènes de plante (génétique)</term>
<term>Mutation (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Plan d'organisation du corps (MeSH)</term>
<term>Populus (cytologie)</term>
<term>Populus (embryologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines à homéodomaine (génétique)</term>
<term>Protéines à homéodomaine (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité d'organe (MeSH)</term>
<term>Tiges de plante (cytologie)</term>
<term>Tiges de plante (embryologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Homeodomain Proteins</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Bois</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Bois</term>
<term>Cambium</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Cambium</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Cambium</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Cambium</term>
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cambium</term>
<term>Cell Differentiation</term>
<term>Genes, Plant</term>
<term>Leucine Zippers</term>
<term>Mutation</term>
<term>Plant Stems</term>
<term>Plant Vascular Bundle</term>
<term>Populus</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cambium</term>
<term>Plant Vascular Bundle</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bois</term>
<term>Cambium</term>
<term>Différenciation cellulaire</term>
<term>Facteur de croissance végétal</term>
<term>Faisceau vasculaire des plantes</term>
<term>Glissières à leucine</term>
<term>Gènes de plante</term>
<term>Mutation</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Protéines à homéodomaine</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Homeodomain Proteins</term>
<term>MicroRNAs</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
<term>Protéines à homéodomaine</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Body Patterning</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Organ Specificity</term>
<term>Phenotype</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phylogenèse</term>
<term>Phénotype</term>
<term>Plan d'organisation du corps</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spécificité d'organe</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21205615</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>155</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.</ArticleTitle>
<Pagination>
<MedlinePgn>1214-25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.110.167007</ELocationID>
<Abstract>
<AbstractText>The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Robischon</LastName>
<ForeName>Marcel</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institute of Forest Genetics, Pacific Southwest Experiment Station, United States Department of Agriculture Forest Service, Davis, California 95618, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miura</LastName>
<ForeName>Eriko</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Groover</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>12</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018398">Homeodomain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019521" MajorTopicYN="Y">Body Patterning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018398" MajorTopicYN="N">Homeodomain Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016350" MajorTopicYN="N">Leucine Zippers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058526" MajorTopicYN="N">Plant Vascular Bundle</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000196" MajorTopicYN="Y">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
<ArticleId IdType="pii">pp.110.167007</ArticleId>
<ArticleId IdType="doi">10.1104/pp.110.167007</ArticleId>
<ArticleId IdType="pmc">PMC3046580</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;169(3):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jan;17(1):61-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Apr 15;20(8):1015-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1134-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 May;4(5):e143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 May;173(1):373-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16489224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2006 Jul-Aug;8(4):350-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16805899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 May;134(9):1653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Apr 20;129(2):229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2139-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Jan;25(2):223-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:67-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):920-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16392-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Mar;137(6):975-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20179097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 20;465(7296):316-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20410882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 May;186(3):577-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 7;411(6838):709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):549-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2001 Aug 21;11(16):1251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Oct 14;13(20):1768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 20;426(6964):255-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Dec;20(6):1203-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Sep;121(9):2723-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7555701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1995 Dec;121(12):4171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8575317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Dec 5;274(3):303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1998 Aug;125(15):2935-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9655815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Nov;7(5):653-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15525527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16607028</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Du, Juan" sort="Du, Juan" uniqKey="Du J" first="Juan" last="Du">Juan Du</name>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
<name sortKey="Miura, Eriko" sort="Miura, Eriko" uniqKey="Miura E" first="Eriko" last="Miura">Eriko Miura</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Robischon, Marcel" sort="Robischon, Marcel" uniqKey="Robischon M" first="Marcel" last="Robischon">Marcel Robischon</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21205615
   |texte=   The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21205615" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020